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The heat propagation problem is formulated for the crystallization
of an ingot obtained by melting metal in water-cooled cylindrical
crystallizers. r](t)

N

Modern methods of refining steel (electroslag,
electron-beam, vacuum-arc) in water-cooled crys-
tallizers involve the calculation of the temperature
fields in the ingot and in the liquid metal bath. We
will examine two methods of approximately calculat-
ing the temperature fields associated with ingot crys-
tallization: a numerical method and an analytic meth-
od. To find a numerical solution we assume that it is
possible to take convective heat transfer into account
by introducing an effective value of the thermal con-
ductivity in the liquid metal. This makes it possible
to reduce the problem of heat and mass transfer to
a problem of the Stefan type with essentially discon-
tinuous coefficients.
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Fig. 1. Region of solution of the prob-
lem: 1) liquid phase; 2) solid phase.
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1. Formulation of the problem for large crys-
tallizers. In the region shown in Fig. 1 we seek the
solution of the equation
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2. Numerical method. To construct the difference
schemes of the numerical solution we chiefly employed

the results of [1] and [2]. The idea consists in first

smoothing the discontinuous functions of W and A on a

with subsequent application of the local one-dimen-
sional method for numerically solving the two-dimen-
sional smoothed problem.

We took the following iterationless difference
scheme with first order of approximation:
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Fig. 2. Effect of the quantity Ao on the shape of the isothermal surface U* = U

for the case of electroslag melting of ShK-15 steel (t = 2400 sec, melting regime:

dn/dt = 0.02 cm/sec = const, effective thermal energy introduced 40 kW, flux

ANF6. The calculations were made for o, = 2a; = 1800 W/m? - deg, U* =1450° C,

Ag = 29.3 W/m-deg, ¢y = 5 J/em®- deg) a) curve 1 corresponds to calculations at

Ae = 2100 W/m - deg, 2 to 210 W/m -deg; b) l—experimental curve, 2—calcula-
tions at Ag = 417 W/m - deg.
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where 7, h, and! are the steps with respect to time
and the space coordinates r and z, respectively. We
ensure that the scheme is iterationless by determining
the thermal conductivity only with respect to the tem-
peratures on previous integral time layers and also
by calculating the smoothed function €(U — U*) from
the temperatures of the preceding layer. The remain-
ing notation corresponds basically with that employed
in [1] and [3].

The calculation scheme of the local one-dimensional
method consists in alternately solving sets of one-
dimensional problems (I) and (II) and ensures that the
rounding errors do not increase during the calculation.

3. Analytic solution, In a series of cases it is desir-
able to have approximate analytic relations which can
be used to estimate the individual characteristics of
the thermal field in the ingot as a function of the start-
ing parameters of the process. The solution presented
below was obtained with the following additional as-
sumptions for the problem formulated in section 1:

1) A, ¢, v are constants, 2) dn/dt = v = const, 3) the
presence of a bottom plate can be simulated by con-
tinuing the ingot to a great length, 4) there are no
latent heat sources, 5) the right side of the second of
boundary conditions (3) is represented in the form
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where q; has a normal radial distribution, i.e.,
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k is the concentration coefficient of the heat flux q(r).
With these assumptions the golution takes the form
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y are the roots of the characteristic equation
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Im{ty) is a Bessel function of the first kind of order
m with real argument.

To make the above solution convenient for practical
use, the functions S; and S, were tabulated on a com-
puter.



4, Discussion of the results, The numerical meth-
od was programmed for a M-20 computer. The pro-
gram consists of 250 instructions and makes it possible
to find the temperature field in a network region of
3000 points. When the number of nodes is varied from
200 to the maximum, the computation time for a single
variant is 20 min. For convenience in processing the
results the program was supplied with a special sub-
routine which printed out directly the coordinates of
the intersections of the given isothermal lines and the
lines of the network.

The results of the numerical experiments showed
that convective mixing of the liquid metal is decisive
in shaping the heat flow in the metal bath. Character-
istic profiles (Fig. 2) of the crystallization surfaces
can be obtained when the convective heat transfer is
taken into account. Numerical values of the effective
thermal conductivity can be estimated starting from
the velocity field distribution or by comparing test
data with the results of numerical experiments. If
some component of the velocity vector predominates
over the rest the thermal conductivity may be aniso-
tropic.

Under normal melting conditions an increase in
crystallizer radius involves an increase in A5. Devia~-
tion from normal conditions requires an additional
increase in A, (intensified heat input) or a reduction
in g (cooler regime). Depending on the size of the
crystallizer and the melting regime A, varies from
10Ag to 40Ag, where Ag is the mean value of the
thermal conductivity in the solid state.

The introduction of an effective thermal conductivity
chiefly affects the shape of the metal bath, almost
without altering its depth. This makes it possible to
use the analytic solution to predict the depth of the
metal bath during the melting process.

NOTATION

W = W(r, z,t) is the enthalpy; U = U(r, z,t) is the
temperature; U* is the phase transition temperature;
¢, v are the specific heat and specific weight of the
material; n = n(t) is the variable position of the mov-
ing outer boundary; p is the latent heat; ¢y, oy are
the heat transfer coefficients at the walls and bottom
of the crystallizer; A =A(U) is the thermal conductivity;
Ty, T, are the temperatures of the cooling water; T
is the temperature of the metal reaching (uniformly
with respect to r) the boundary z = n(t); Ais the smooth-~
ing interval; q = g(r) is the heat flux at the boundary.
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